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Population dynamics of prey exhibiting inducible defenses:
the role of associated costs and density-dependence
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Abstract

The effect of antipredator behavior on the dynamics of a resource–consumer model was analyzed in relation to the magnitude of

associated costs, and the strength of density-dependence. For this purpose, I present a deterministic continuous resource–consumer

model that exhibits biomass conversion, structural homogeneity, and competition for renewable and fixed resources as separate

processes. Antipredator behavior is incorporated as an inducible response to consumer density, and has metabolic and feeding costs.

By means of numerical methods, I show: (1) that antipredator behavior is stabilizing for certain parameter ranges, where other

stabilizing forces do not dominate the dynamics; (2) intraspecific competition for both fixed and renewable resources have a

stabilizing role; (3) metabolic cost is always stabilizing, and feeding cost can be stabilizing or destabilizing, depending on the relative

strength of the two competition forces.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Population dynamic consequences of antipredator
behavior (APB) have been theoretically addressed in
several works. Early works focused on refuge use by
prey (either as a constant number or as a constant
proportion of the population being protected against
predation), including this process in predator–prey
models by modifying the functional response of the
Lotka–Volterra model (Maynard-Smith, 1974; Mur-
doch and Oaten, 1975; Harrison, 1979). From these
studies a robust prediction emerged indicating a
stabilizing effect of prey refuge on system dynamics,
particularly when a fixed number of hidden prey was
considered. More recently, some authors have con-
firmed this general stabilizing pattern in the framework
of more complex lumped models (Sih, 1987a; Ives and
Dobson, 1987; Ruxton, 1995).

Antipredator models have also been presented con-
sidering spatial structure, specifically in a two-patch
environment with differences in predation risk. Thus,
Scheffer and De Boer (1995) explore the dynamic
consequences of a predator–prey system in which there
are a safe patch for prey (free of predators), a risky
patch (occupied by predators), and a passive flow of
prey between patches. The effect of the refuge size
(antipredator trait) is stabilizing on that system. None-
theless, since the model of Scheffer and De Boer (1995)
does not have costs of using refuges and it is not allowed
an active movement of prey to the protected area, this
system represents constitutive instead of inducible
defenses. On the other hand, Krivan (1997) studied the
population dynamics of a two-patch system in which
fitness-maximizing predators moves freely between two
patches or both prey and predators are free to move and
maximize their fitness. The population dynamics con-
sequences are explored under different scenarios of
predator mortality risk and prey growth potential. The
case where only prey optimize their choice between
patches with different protectiveness and growth condi-
tions is analyzed in Krivan (1998). The effect of the
optimal behavior on population dynamics was shown to
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be stabilizing. Inducible defenses are implicitly consid-
ered in these models since the populations move between
patches maximizing their per capita intrinsic growth rate.
Nevertheless, other results, in the context of different

models, do not show such a clear pattern, and both
stabilization and destabilization arise as a consequence
of APB (McNair, 1986; Collings, 1995; Ramos-Jiliberto
and González-Olivares, 2000; Ramos-Jiliberto et al.,
2002). These different, and sometimes opposing, con-
clusions regarding the effect of antipredator traits on
system dynamics are most likely a consequence of the
different models being used. Different models imply
different ecological assumptions, which are not always
made explicit by the authors. Thus, biomass conversion,
self-limited growth, saturating functional response, costs
of APB, predator-dependency of APB, and other
processes, are components which can be found in one
antipredator model or another, in a somewhat arbitrary
way. Therefore, the dynamic effects of antipredator
responses should be evaluated in relation to other
population parameters; otherwise conclusions will be
obscured by the different assumptions unique to each
model.
Antipredator defenses can be broadly classified into

prey traits which prevent the encounter with predators
and traits which prevent consumption after encounter
(Sih, 1987). Moreover, defenses can be constitutive, i.e.
fixed traits, or inducible by cues released by predators.
Inducible defenses are expected when predation pressure
is variable, there are costs of the defensive strategy and
there are reliable cues for detecting predators (Harvell
and Tollrian, 1999). In this work I focus on APB that
belongs to the category of inducible and encounter-
avoidance defenses. Although inducible defenses are
found in many taxa and ecosystems (Tollrian and
Harvell, 1999), few theoretical papers have incorporated
inducible antipredator responses as an essential ingre-
dient in modeling trophic interactions.
Therefore, the purpose of this study is to analyze the

population dynamic consequences of APB in a resource-
consumer (predator–prey) system, under different costs
and density-dependence regimes.
In a previous work (Ramos-Jiliberto et al., 2002) we

presented a more restrictive and complex model that
differs in some important points from the one presented
here: (a) the old model did not include competition for
fixed resources; (b) feeding cost was assumed to affect
the maximal food intake instead of affecting the
consumer–resource encounter rate; (c) metabolic cost
was incorporated into a special metabolic function,
whereas in this work that cost simply adjusts the
maintenance requirement inside the conversion func-
tion. But more important, in our 2002 work we did not
address the effect of density-dependence on the system
dynamics, neither in isolation nor in conjunction with
other processes.

Here I present a continuous, deterministic resource–
consumer model that obeys the principle of biomass
conversion (Ginzburg, 1998) and includes competition
for fixed and renewable resources as separate processes;
while APB will be treated as a process that primarily
interferes with the biomass flow between trophic levels.
The assumptions implicit in this model consider APB as
an instantaneous and reversible response to predator
density; and this response translates to a change in
vulnerability of the prey population as predator density
varies. These assumptions are realistic for cases of
behavioral avoidance triggered by predator cues, such as
diel vertical migration of zooplankters in response to
fish (Zaret and Suffern, 1976; Lampert, 1989; De
Meester et al., 1999), hiding behavior of small mammals
as a response to raptors (see Ramos-Jiliberto et al., 2002
and references therein), and activity shifts of tadpoles in
response to larval dragonflies (Anholt and Werner,
1999). Morphological defenses exhibited by prey soon
after the predator cues are released to the environment
could also fit my model system, e.g. ciliates which alter
their cell shape in response to protozoan and metazoan
predators (Kusch, 1998), and rotifers which develop
spines in response to predatory rotifers (Gilbert, 1999).
Nevertheless, a more rigorous approach to this kind of
defenses may deserve a different strategy. Other
morphological or physiological defenses which develop
slowly in the prey population should be addressed
through including an additional state variable or time
delays.
In general the model presented here is a reasonable

approximation to those systems for which the prey
develops avoidance defenses shortly after predator risk
increases and lowers back the defenses shortly after
predator risk decreases, relative to the timing of
population dynamics. The translation of individual
defensive traits to the population level is solved by
measuring the dimension of state variables as biomass
instead numbers, and by the definition of vulnerability
which is expressed here as a continuous smooth function
that does not require distinction between, for example,
having a half of the population exhibiting the full
defensive trait and a half not exhibiting defenses, versus
the whole population exhibiting defenses at a half of its
effectiveness.
The gain in survival will have two types of costs: a

metabolic cost, which translates into an increase in the
maintenance requirement of the prey population; and a
feeding cost, which translates into a decrease in the
encounter rate between the prey and its food resource.
The role of costs of APB is unclear since different kinds
of costs have been shown to exert different effects on the
stability properties of a resource–consumer system
(Ramos-Jiliberto et al., 2002). Density dependency, On
the other hand, is recognized as a stabilizing factor in
population dynamics (see Berryman, 1992), and it has

ARTICLE IN PRESS
R. Ramos-Jiliberto / Theoretical Population Biology 64 (2003) 221–231222



been suggested that the intraspecific competition for
fixed resources (e.g. space) and the intraspecific compe-
tition for renewable resources (e.g. food) should be
distinguished as separate mechanisms which generate
density-dependence (Berryman et al., 1995a).

2. Methods

2.1. The model

2.1.1. Baseline

Here I use the following model (1) for any population
of size N and trophic level i:

dNi

dt
¼ Ni½fiðfiÞ � biNi� � fiþ1ðNi;Niþ1ÞNiþ1: ð1Þ

This model accounts for intraspecific competition for
fixed resources, measured through the coefficient bi: The
extraction rate, through consumption (predation) by the
upper trophic level, is described by the function fiþ1:
Function fi denotes the conversion rate of consumed
resources from the lower trophic level (fi), to biomass
of level i: Setting Ni ¼ X for a prey population, and
Niþ1 ¼ Y for the top, exclusive and specialist predator
of that prey, the structurally homogeneous resource–
consumer system is

dX

dt
¼ X ½fX ðfX Þ � bX X � � fY ðX ;YÞY ð2aÞ

dY

dt
¼ Y ½fY ðfY Þ � bY Y �: ð2bÞ

2.1.2. Antipredator behavior

Prey APB is considered to be an instantaneous and
reversible response to predator density (Ramos-Jiliberto
and González-Olivares, 2000; Ramos-Jiliberto et al.,
2002). The primary effect of such a response is a
decrease in predation success through lowering the
vulnerability of the average prey to be consumed. This
effect is, thus, advantageous for the prey (increasing
survival), and detrimental for the predator (decreasing
biomass income). The vulnerability function, V ; should
decrease with predator density, but it is also convenient
that 0oVp1:
Eq. (3) defines prey vulnerability as a decreasing

function of predator biomass (Y ), and its shape is either
hyperbolic (z ¼ 1), sigmoid (z41), or constant (z ¼ 0):

V ¼ VðY Þ ¼ 1� u
1þ Y zu�z

þ u: ð3Þ

The maximum of V is equal to one (i.e. no decrease in
prey vulnerability) and the minimum is u; which is
attained at high predator densities. The value of z (if
greater than 1) defines the abruptness of the curve,
which should be large if an on/off response takes place;

u indicates the critical region of Y where the anti-
predator response is induced (Fig. 1).

2.1.3. Extraction function

For the purposes of this work, I use a type II
extraction function, with self-interference among con-
sumers (Beddington, 1975; Huisman and DeBoer, 1997):

fiðNi�1;NiÞ ¼
qiNi�1

qi=ai þ Ni�1 þ siNi

; ð4Þ

where Ni�1 is the resource availability for the consumer
population of size Ni; ai the encounter rate between the
consumer and its resource; qi is the inverse of the
handling time per resource item, and defines the limit of
the extraction function when resources are most
abundant; si is a self-interference coefficient that
accounts for intraspecific competition for food. The
half-saturation term in this function is given by
(qi=ai þ siNi). By adding Eqs. (3) and (4) and rearran-
ging terms we obtain

fX ðXÞ ¼ qX

1þ ððqX=aX Þ þ sX X ÞR�1 ð5Þ

and

fY ðX ;YÞ ¼ qY

1þ ððqY=aY Þ þ sY YÞ½VðYÞX ��1
: ð6Þ

2.1.4. APB feeding cost

Assuming that APB involves some behavioral change
that diminishes the encounter rate between a prey and
its food, one can specify a simple, linear equation that
describes a decrease in aX ; of relative magnitude CF ; as
vulnerability decreases (Fig. 2):

aX ¼ aX ðVÞ ¼ a½1� CF ð1� VÞ� ð7Þ
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Fig. 1. Graphical representation of prey vulnerability (Eq. (3)) as a

function of predator abundance. Three curves are shown for different

values of the parameter z: The inflexion point (with z41) is located at

Y ¼ u: Parameter u sets the vulnerability level when predator

abundance is very high, thus being a measure of the effectiveness of

the antipredator behavior.
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where a is the encounter rate when the consumer does
not exhibit APB. The feeding cost CFAf0; 1g represents
the difference between the encounter rate of invulner-
able consumers and that of fully vulnerable consumers.
For example, CF ¼ 0:5 means that hypothetically
invulnerable consumers (V ¼ 0) possess an encounter
rate 50% lower than vulnerable (V ¼ 1) ones.

2.1.5. Conversion function

For simplicity, I use a linear conversion function,
which is the form most commonly found in ecological
literature:

fiðfiÞ ¼ ki þ mifi: ð8Þ

Usually the intercept ki (i.e. the rate of biomass gain
with no consumption), is set to be negative, and is
interpreted as the background mortality rate. On the
other hand, the product of the consumption rate fi and
the slope mi is interpreted as birth rate; mi being the
conversion efficiency (e.g. Yodzis, 1989; Berryman and
Gutierrez, 1999). Defining an amount of ingestion f0

needed for zero growth (i.e. a maintenance require-
ment), setting f 1i -0 as f-f0 gives:

fiðfiÞ ¼ miðfi � f0
i Þ: ð9Þ

2.1.6. APB metabolic cost

The maintenance requirement can be affected either
directly or inversely by APB. This is accomplished
through changes in metabolic expenditure. Some ani-
mals avoid predation by minimizing their movements
(Werner and Anholt, 1993), others by shifting their
feeding and vigilance behavior (e.g. Sih, 1987b; Lima
and Dill, 1990; Vásquez, 1994, 1996; Vásquez et al.,
2002), or by shifting their spatial location (Lampert,

1989). These responses drive either an increase or
decrease in metabolic losses. These relationships can
be formalized in the following equation, and is
graphically represented in Fig. 3:

f0
X ¼ f0

X ðVÞ ¼ fm½1� CMðV � 1Þ�; ð10Þ

where fm represents the maintenance requirement for
zero growth when prey are in the fully vulnerable state
(i.e. when V ¼ 1). CMAf�1;Ng is the metabolic cost of
APB for prey; it represents the maximal increase in the
maintenance requirement as a consequence of APB.
Under some circumstances, the metabolic cost
could be negative (i.e. a benefit) since APB can reduce
activity metabolism. Nevertheless, in this model meta-
bolic cost is considered to be positive (i.e. an actual
cost).

2.2. Numerical analyses

Stability analyses and continuation routines were run
using the software XPPAUT version 5.5 (Ermentrout,
2002). The implicit, adaptive step-size integrator
CVODE was used to find the numerical solutions of
the differential equations. One and two-parameter
bifurcation diagrams were obtained by continuation of
fixed points and Hopf bifurcation points, using the
AUTO package (Doedel, 1984) included in XPPAUT.
The control parameters were: magnitude of prey
vulnerability decrease under high predator density,
intraspecific competition for fixed resources, intraspe-
cific competition for renewable resources, feeding cost,
and metabolic cost of APB.
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3. Results

For analysis, the model parameters were initially set
to those values shown in Table 1. When changes were

made for stability analyses, they are indicated in the
corresponding section.
The survival gain of prey as a result of APB is

measured by the parameter u: The effect of the value of u
on the prey equilibrium density and local stability is
shown in Fig. 4. Parameter u is an inverse measure of the
effectiveness of APB, since lower u values imply that
prey greatly reduces its vulnerability under the presence
of high predator density. Fig. 4 shows six bifurcation
diagrams with varying degrees of competition and APB
costs. The left plots show the results for high-cost
conditions and the right plots show the results for zero-
cost conditions. Top, middle and bottom plots show,
respectively, the results for increasing levels of food
competition. It can be seen that in all cases the effect of
increasing u is destabilizing and lowers the equilibrium
density of prey (i.e. lowering prey vulnerability as a
result of APB stabilizes the community non-trivial
equilibrium and increases the prey equilibrium density).
Competition levels affect the position of the Hopf
bifurcation on the abscissa and, consequently, the size of
stability basins. With weaker competition, the prey
density stabilizes at lower vulnerability levels, and the
amplitudes of the limit cycles are larger at any value of u:
With stronger levels of competition, the dynamics can be
unstable only if APB produces very small survival gains.
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Table 1

Initial parameter values used in the analyses

Parameter Value

bX 0.003

bY 0.002

mX 0.6

mY 0.5

f0
Y 0.5

R 1000

qX 3

qY 5

aY 0.05

sX 0

sY 0

u 1

z 10

u 20

CF 1

CM 1

a 0.05

fm 0.6

0
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400
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200

400
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0
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υ

X
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υ
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0 1 0 1
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Fig. 4. Bifurcation diagrams of prey equilibria with parameter u; representing APB effectiveness, as the control parameter. Thick continuous lines

represent stable fixed points, thin continuous lines represent unstable fixed points, dotted lines show the maxima and minima of stable orbits.
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On the other hand, a higher APB cost determines a
decreased prey equilibrium density, since APB is more
effective (lowest values of u).
Figs. 5 and 6 show stability diagrams in the parameter

space of u and the competition parameters SX ; SY ; bX

and bY : Analyses reveal that competition for both fixed
and renewable resources interact with APB effectiveness
to produce similar qualitative effects on the stability of
the non-trivial community equilibrium. This is true
when APB has no associated costs (Fig. 5), as well as
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when APB is costly (Fig. 6). The main effect is that both
kinds of intraspecific competition exert a stabilizing
effect. Therefore, the equilibrium point is locally
unstable at low APB effectiveness and low levels of
competition. From Figs. 5 and 6 it is possible to note
some differences between the effects of the four
competition parameters, stability being more sensitive
to bX and by than to SX and SY : Expressing this effect in
numbers, when bY or bX is greater than 0.01 this is
sufficient condition for local stability of the equilibrium,
but a value of SX or SY greater than 3 and 0.5,
respectively, is needed in order to assure stability.
Nevertheless, in the limiting case bY ¼ bX ¼ 0 (Fig. 7),
the stability basin of the stable point is reduced to the
region of large APB effectiveness and/or strong compe-
tition for renewable resources. However, competition
among prey is a slightly stronger stabilizing factor than
competition among predators, in the sense that the
stability basins of the fixed points are comparatively
larger in the bX and SX versus u planes (Figs. 5 and 6).
Fig. 8 shows the interacting effect of competition and

metabolic cost of APB on the local stability of the
resource–consumer system. In this example, APB
effectiveness was set to a moderate level of 0.65. The
two upper plots show the effects of competition for fixed
resources and metabolic cost; the lower plots show the
effects of food competition and CM : In the left-hand
plots the competition is among prey, whereas the right-
hand plots show competition among consumers. These
analyses reveal that the effect of metabolic cost on
system dynamics is strongly dependent on the competi-
tion strength. At high levels of competition (either
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among prey or among predators, for fixed or renewable
resources) the equilibrium is stable, irrespective of the
value of CM : At low levels of competition, the dynamics
are unstable, and stable limit cycles surround the
equilibrium point. At intermediate competition levels
there is a range of values of the competition coefficients
where CM changes the qualitative behavior of the
system, transforming an unstable point into a stable
point as the cost grows.

An analysis of Fig. 9 reveals that the effect of feeding
cost of APB on the stability properties of the system is
different to that of the metabolic cost stated above.
Here, the effect of the feeding cost of APB is
destabilizing at high levels of SX and SY ; and low levels
of bX and bY : The distinction between the effects of
feeding and metabolic costs is more clearly shown in
Fig. 10. At high levels of bX or bY the dynamics are
always stable, but at moderate levels of these para-
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meters, the stability depends on the values of APB costs
and the values of SX and SY (Fig. 10). Specifically, when
food competition is low the effect of feeding cost is
stabilizing (upper left plot), but with a combination of
very low competition for fixed resources and strong food
competition the effect of feeding cost is destabilizing
(upper right plot). On the other hand, the effect of
metabolic cost can only be stabilizing (lower plots of
Fig. 10).

4. Discussion

The baseline model (1) allows for the inclusion of a
range of extraction and conversion functions. For
example, when a linear conversion function is used in
combination with a prey-dependent linear, non-saturat-
ing extraction function, and setting bi ¼ 0; the Lotka–
Volterra predator-prey model (Lotka, 1925; Volterra,
1926) is obtained; if a prey-dependent type-II extraction
function is used instead of the linear one, the Rosenz-
weig–McArthur model is obtained (Rosenzweig, 1971).
Finally, if a hyperbolic conversion function is used in
combination with the Beddington predator-dependent
extraction function (4), the metaphysiological model of
Getz is obtained (1991). In this work, I used the simplest
form of the model that allows for separate analysis of
the effect of competition for fixed resources, and
competition for renewable resources. Furthermore,
structural homogeneity was respected and APB was
incorporated as an inducible and costly response (see
Ramos-Jiliberto and González-Olivares, 2000; Ramos-
Jiliberto et al., 2002).
To my knowledge, there are no previous works where

the effects of density-dependence are explicitly examined
together with APB and associated costs. Furthermore,
the structure of earlier models used to analyze the
population effects of APB often contains quite restric-
tive assumptions. I consider a restrictive assumption to
be the lack of structural homogeneity, since in this case
the populations of resources and consumers are believed
to follow different dynamic rules due only to the fact
that they belong to different trophic levels (Getz, 1984;
Berryman et al., 1995b). Accepting that most popula-
tions in nature are, at the same time, resources and
consumers of other populations, structural homogeneity
is a parsimonious rule.
Among the first models addressing the population

consequences of APB were those which considered that
a fixed fraction, or number, of prey was unavailable to
predators, but there was no implicit cost (Maynard-
Smith, 1974; Murdoch and Oaten, 1975; Harrison,
1979). With time, more realistic models were introduced,
which considered that the amount of hidden prey could
vary with predator density (Sih, 1987a; Ives and
Dobson, 1987; Ruxton, 1995) and that prey APB

imposed some growth cost (McNair, 1986; Sih, 1987a;
Ruxton, 1995; Ives and Dobson, 1987). Still, some form
of density-dependence was incorporated in the models
by McNair (1986), Ruxton (1995), Sheffer and de Boer
(1995), Collings (1995), Ramos-Jiliberto and González-
Olivares (2000), and Ramos-Jiliberto et al. (2002).
Nevertheless, none of these models distinguished be-
tween competition for fixed versus renewable resources,
as mechanisms generating density-dependence. Under
the diversity of assumptions which are explicit or
implicit in previous population models of APB, it is
difficult to infer, from the published results, the role of
cost and density-dependence on system dynamics.
The analyses performed here reveal that predator-

induced APB is a stabilizing force (i.e. an increase of
antipredator effectiveness can transform an unstable
equilibrium into a stable equilibrium). This effect
appears if other stabilizing factors do not dominate
the dynamics (e.g. if density-dependence is not very low,
in which case the dynamics remain unstable; or if
density-dependence is very high, in which case the
dynamics remain stable irrespective of the realization of
APB). This result is in agreement with most previous
work (Maynard-Smith, 1974; Murdoch and Oaten,
1975; Harrison, 1979; Sih, 1987a; Ives and Dobson,
1987; Ruxton, 1995; Sheffer and de Boer, 1995),
although a more elusive pattern results from the model
of McNair (1986). Ramos-Jiliberto and González-
Olivares (2000) followed the metaphysiological ap-
proach closely based on the model by Getz (1991,
1994). This model lacks competition for fixed resources,
and the conversion function is saturating instead of
linear (as in the present work). The results of Ramos-
Jiliberto and González-Olivares (2000) suggest that APB
is destabilizing in some portion of the parameter space,
but through a further increase in APB response the
unstable equilibrium can be transformed to a stable one
in which extinction of one or both populations occur.
However, in the model of Ramos-Jiliberto et al. (2002),
APB could transform a stable equilibrium into an
unstable one, but not vice versa. Nevertheless, in most of
the parameter space APB did not change the qualitative
stability of the system. In the present work, I have not
found any evidence for destabilization of the community
equilibrium as a consequence of increasing APB
response.
Another result of this work is that at a given level of

antipredator effectiveness, density-dependence remains
as a strong stabilizing force. However, density-depen-
dence arising from competition for renewable resources
appears to have a weaker stabilizing effect, in relation to
competition for fixed resources.
Finally, APB metabolic cost can stabilize a system

which is initially unstable, and cannot destabilize a
system which is initially stable. Conversely, APB feeding
cost can stabilize a system which is initially unstable,
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and it can also destabilize a system which is initially
stable, depending on the competition parameters. At
very low levels of competition for renewable resources,
and a moderate level of competition for fixed resources,
the effect of feeding cost is stabilizing. On the other
hand, if competition for renewable resources is strong,
and competition for fixed resources is very weak, the
effect of feeding cost is destabilizing. These results are
different from those previously reported. While Sih
(1987a) found a stabilizing effect of APB cost on
community equilibrium, Ruxton (1995) showed that
APB cost was marginally stabilizing. It is important to
note that neither author considered different types of
costs. On the other hand, Ramos-Jiliberto et al. (2002)
found that feeding and metabolic costs can either exert a
stabilizing or a destabilizing effect, depending on the
other parameters, particularly on the values of the costs
themselves, and APB effectiveness. The patterns shown
here are more unambiguous than those of Ramos-
Jiliberto et al. (2002), but both studies agree in that the
dynamic consequences of APB at the population and
community level depend on the interaction of several
parameters, particularly APB costs and effectiveness.
The results of this work are amenable to empirical

testing, since the parameters representing the different
kinds of costs and intraspecific competition are all
environment-dependent (e.g. the thermal environment
should determine the magnitude of metabolic costs, and
the availability of nesting sites should affect the
magnitude of the competition among bird for fixed
resources).
From a theoretical point-of-view, future research

should clarify the robustness of these predictions by
studying models with different conversion functions,
perhaps more realistic than the linear one used here.
Likewise, the addition of non-linear density-depen-
dence, more complex APB functions, population struc-
ture, and multitrophic relationships are expected to be
considered as an extension of this work, in order to gain
a better understanding of trophic interactions in nature.
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